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The simplest problem of motion of an anisotropic conducting medium in a half-space in the 

presence of a magnetic field was examined by Fay [l] and Sakhanovskii [2], who established 

that the distribution of velocities in the fluid is not monotone. A periodic structure of the 

velocity distribution, arising as a result of anisotropy of conductivity is apparently char- 

acteristic for many flow problems in semi-bounded regions. Some such problems are 

examined below. 

1. Let us first examine the steady flow of a conducting medium in translational 

motion above an infinite plane. The external magnetic field B, is considered homogeneous 

and perpendicular to the plane. We assume that the plane is permeable and that in this 

plane the values of all components of velocity, the temperature and of the magnetic field 

are given. At the infinite distance from the plane all quantities are assumed to be bounded, 

and some of them (components of velocity) are assumed to be known, while the remain- 

ing ones are determined from the solution. We shall use Ohm’s law in the form applicable 

to a weakly ionized gas when the anisotropy of conductivity is reduced to the Ball effect. 

The dependence of physical properties of the medium on temperature and pressure will be 

assumed known. 

The x- and z-axes are oriented in the plane while the y-axis is perpendicular to it. 

We assume that all quantities depend on y only. From general equations of magneto- 

hydrodynamics we then obtain the following system [3] : 
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c dB, dE dE 
ix = --, 4% dy 

j*-0 jz=-4+dg, -&Lo, +o 
0.3) 

ix = 0 [E, + + (UB, - wBcl,] + ajzBo 

0 &+$(wB, i - a) + d (j,R,’ - j,B,) = 0 ] 
i* = 6 [Ez + $ (us,-u&)] - aj_$, 

(1.4) 

Fh f’, T) = 0, rl = q (P, T), k=k (p, I’), CS=;~CJ (p, T), a = E=a(pT) 

dT 
- = g (k gj + f (ix” + i,“) + 

(I.51 

Puca dy 

fc,=c, (P, T)) (1.6) 

Here u is the Hall coefficient, while the remaining symbols are the ones generally 

accepted. We shal1 also denote values of function at y = 0 and at y -toa by indices w and 

m, respectively. From Equations (1.11, (1.31 and (1.4) we obtain 

The energy equation is transformed in the usual manner by adding it to equations of 

motion (1.1) and (1.21 multiplied by a, u and w. Utilizing relationships (1.7) and (1.8) and 

expressions for jz and j, from (1.2) we find 

P~V, [ cv (T - T,) + &V2 -voc”) =kg+ 1 +g++Ft$_ 
- &{[PmVw cw --4 - Gg+JLJ - G3~0) + 
+ [PaAo (a - &n) - q $1 (v~Broo - n,R,)) + 

(X.9) 

Further we shall consider the special case of aa incompressible fluid with the follow- 

ing constant properties* : 

7 = con&, k = con&, (r = cons& a = const, p = Cons& and cu = const. 

Then the solution to the system (I.11 to (1.6) can be obtained in the finite form. Let us 

introduce the notations 

* This problem was first examined by I.P. Semenova (II Vsesoinsnyi s’ezd po teor. i 
prikl. mekhanike (II All-Union congress of theoret, and appl. mechanics) M., Ann. dokl., 
p. 194, 1964. 
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(1.10) 

V” = u +- iw, J” = jx -f- ijLt I:‘” = I<, + iE,, Ilo = B, _t 23, 

and rewrite the initial equations in the foIlowing form 

According to (1.7) here IJ = vu,, Following [4], we obtain 

Here L is some given quantity. It is evident that the general solution of this equation 

is 

(1.16) 
T;” = IT,” f CreYlLJl i_ CZeYtZIz 

Further it is easy to show that the magnetic field, the current and other quantities 

are determined with accuracy tc up to the constant values, by the following equations 

RmO) rfi “f$ f(R + l?py - 4 (RR,“--IMd2) 

B” 
0.17) 

Jo = - $J- [Cl71 (R - 71) fffru6 + C2rg (H - y2) eynfll] 

and relationships (1.11) and (1.14). Constant C, and C, must he determined from the con- 

ditions at yl = 0 and y1 J Q). In connection with :his we shall examine the quantities j’l, 

and T2. After few simple transformations we find 

fl+ 181 

s 1,2 = 
$_ * (“2 - ; - 46 +[(“Z - “8 - 4b )” + ( ad - 2&&b 2 “‘1% 4 )I I 

c&,2 

= _f+ S-;-U +[(S-f-4” )a+(ad-F 2%‘:~ 

)I > 

a = R -j- I?,,, b = RR,, - Msz, d = a&Rme, M, = 1 f+f” [, JL= ffLC1 

It is easy to show that s1 p become equal to zero only when b = 0, while wt 2 only 

when UB ,=O. Signs of s1 2 wfth reference to u and b are determined according td the 
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table shown on the left. 
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01 <o 1 >o 1 =o This result is independent of values of 

b 1 >O(>O) >O ( <0 1 =-A,&2 
other parameters, including uB, and therefore 

coincides with the result found ealier for the 

rrjGOl>O/ >O 1 >o isotropically conducting fluid [s]. Similarly, 

%I <0 1 w/ -Qq <o the conclusions regarding the selection of 

constants C1 and C, and also their relationship 

to the quantities I/O and So at y = 0 and y + DQ, 

remain in force. 

Thus for v < 0, b > 0 we have 

C1= 
B, Mm0 - Boo*) L - 4%~ ( VW0 - V,“, (R - r,) 

4W(T1- ?-2) 

4xrl v,* - V,“) (R - rg) - B, (B$ - B,O) L (1.19) 

Ca= 
4W (a-7s) 

where VW”, Vacu, B,‘, and B O oc can be given arbitrarily. For v < 0, b < 0 or 

u > 0, b < 0 we obtain respectively 

Cl = 0, Ca = VW0 - v=o, 
B,L B,D - B,” 

v~“-Vc00=4~~ R -_rr 

B,L B,’ - B,” (1.20) 
4 =vwo-v~o) c,=o, v,"-v,o= bjq 

R---r1 

i.e. only three quantities can be set arbitrarily and only such flows can be realized for 

which VW* - Vme and BW’ - BOcQ satisfy the relationships given in (1.20). 

Finally, for v > 0, b & 0 we obtain C, = C, = 0 with the result that only the 

trivial condition I/O = const and ED = const is possible. 

Thus distribution of v“ (y), B” (y), and J” (3) in the general case, a non-monotone 

character. The frequency of periodic changes of these quantities is determined by Equa- 

tion (1.18), while for Cl # 0, C, # 0 t h e combination of two oscillating functions 

with different periods o1 and oz. At the same time as it is well known, the sum may either 

be a periodic function (with period not less than max (01, Wz)), or a non-periodic function. 

From Equations (1.18) it is evident that for any non-trivial solution (containing two or 

one exponential term) it is possible, by selection of the sign of the external field Bar to 

obtain one of the frequencies such that 

Ial* 
jd2J +{_ as-d;-46 +[(u*-;-4b)+a +(od-~R,b)~]%}‘h 

From this 161 1 > 1 ‘/z d / f o 11 ows. Therefore, if CL # 0 and the sign Bo is chosen 

such that d > 0 for v < 0 and b < 0 and d < 0 for u > 0 and b < 0, then increase in IR,I 

results in arbitrarily large values of frequency. On the other hand, when 1 c&,, 1 + 0 

and /‘%I - 00 we have Or,z -+ 0. Therefore, only limited and, apparently 

insignificant change of frequancies can result from increase of the Hall coefficient. 
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It is interesting to compare the ‘wave lengths’ on the velocity profile, i.e. quantities 

& = 2n / a, with the thickness 6 of the boundary layer on the wall. It turns out that such 

fiows are possible when h < 6. In fact, for example, let C, m 0 by virtue of boundary con- 

ditions (&’ - &” in this case is related to yr and ya), 0 < 0, b > 0, Bo > 0 

Le. a < 0, and d < 0). W e a so assume for the sake of simplicity 1 

Then 

V,” =I 0, V,” ---. u, fm, = 0) 

u -_ Re V” = uoo (1 - eslYI cos o,y,) 
(1.21) 

Extrema of II (yf are reached at the points where tan W,Y, = S1 / 01. For vaiues 

of b close to zero the decrement st is quite smafi while the freqnencytil s l/z (1 a 1 f 1 d 1) 

may be large due to 1 a 1 > 1 d I. At the same time [ S, / 61~ I< 1 and points of the 

extremum are determined by the approximate relationship 

The velocity at the point @I = ylfkf is, according to (1.21), 

u (y(k)) w u, 
[. 
1 - (-1) ’ cos (s,/o,) exp z (xk + z)] 

Neglecting the square of the small quantity 8, 1 ml, we obtain from this 

u (y(k)) ==: IL, I- (_ I)” ~0s 2 e~k%/wl 
1 

In this manner, when ~1 / a1 <( 1 / nk, the velocity in the k-th extremum is 

different from am, and therefore 6 > yckf > $2) > A. On the other hand, if the dis- 

placement thickness is introduced in the usual way 

then obviously PI(k) > &* I_& f or all k. Consequently, for COG >> S1 the displacement 

in a given case does not characterize the thickness of the boundary layer in the sense 

that for y > 6* the values of velocity may differ strongly from U, . 

Returning to the energy equation (1.14) it is not difficult to show that the temperature 

distribution is always monotone since 

With increase in the parameters s and o the thermal fluxes increase substantially. 

For the particular case examined above, where u is determined by equation (1.21) and 
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w = _ u&xYl sin o,y,, we have from (1.17) 

1 J” I2 = (sala urn2 (~~2 + at2f [(R - .Q2 + 01~1 e2’lva 

i.e. ) k dT I dg / increases as wz. 

2. The effect of variable properties and compressibility of fluid on the character of 

the velocity profile can be evaluated approximately by constructing, for example, the 

solution for the system (1.1) to (1.6) for large values of y. We write 

v=vm+v’, B=B,+B’, j= j’, E=E,+E 

p=p,+p’r p=p,-W, T=T,i-T’, a=a,+a’ 

k=kw+k’, q=qco+q’, ct=ctco+u’, c,=c,,,+c~ 

where all quantities with the index 00 are constant. Linearized system (1.1) to (1.6) after 

omitting the primes takes the form 

P,,” + PV, = 0 (2.1) 

dv 
~CO~CO dy -=-~+_t~9m~+~(j*Bxm-jxBrm) 

* c dB, 
jr = 4n dy --, 

(2.3) 

(2.4) 

jr = + (2, B,, + v& - u&,) + u&B, 

jL = % (uB,- v&, - vBro3) - a&B0 

(2.5) 

Here in writing (2.1) equation (1.7) was utilized. Constants &, I,, and I, are the 

values of derivatives of F with respect to p, p , and T when y + 00. We note that equatious 

(1.5) for q, k, @, a, and oy remained unused because the perturbations of these quantities 

do not enter into the equations and in the adopted approximation do not exert any in- 

fluence on the asymptotic behavior of the flow. It should be pointed out that the weak in- 

fluence of variation of properties is found also when a different approach to the problem 

is used. For an incompressible fluid, for example, it turns out,that for u I 0 small values of 

(d In (r I d In T), of the order of F, correspond to changes in frequencies o of the next 

order of megnitude as compared with 8 * 

+ This fact was established by L.E. Pskurovskii and I.M. Rutkevich, students of MGU. 
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We shall seek solutions of the eystem (2.1) to (2.7) in the form 

7.4 = A,eYul f v = Averaft , ’ - * f T = ATeYus 

with the condition that Re y < 0. For determination of y we then obtain the equation 

In the case of incompressible fluid (A, = A, = 0) we find, from (2.81, four values 

of ‘j’, which naturally coincide with values of ‘)‘I, 2 and their complex conjugates yl, 2, 

computed in section 1. The effect of compressibility leads to the appearance of two 

additional roots. Besides, as a result of compressibility the aa~ptotic behavior of the 

solution begins to depend on the flow and field parameters at infinity. 

The distribution of velocities has a periodic structure, and the frequencies are the 

same as in the case of incompressible fiuid when B, = 0 and A, = 0 (the density 

depends on temperature only), and also for Mo,2 < 1 in the case of perfect gas, when 

M,2 = 
*co” 

----I x(x--I)c-T, 
11=1, z2=-c,,(X-l)Tco, b=-h+---1)Pco 

For A, # 0 and the finite values of other parameters an increase in Ba2 / Bo2 

leads to the result, that all six roots of equation (2.8) become real. When BW2 / B,2 -..+ QQ, 

then four of these roots approach finite values 

P, fi9 ‘/a (R + Rm) f: “/2 v/(R + Rm)2 - 4 (RRm - MZ) 

while the other two increase without bounds as 

+$p -r/“/s (I + &02B02) 

In this manner the distribution of velocities in s compressible flow far from the bound- 

ary may he periodic as well as monotone. The latter is always achieved here in case of 

appropriate increase of the longitudinal magnetic field at infinity. 

We note that the initial system of equations (1.1) to (1.6) coincides with equations 

describing the structure of a shock wave. If we limit ourselves to the case of an inviscid 

and thermally non-conducting perfect gas, we obtain in the limit, from equation (2.8) 
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The discriminant of this equation 

is analogous to Expression (23) of 161, w h ere the structure of a shock wave in an aniso- 

tropically conducting gas was analyzed. The condition D < 0, which is necessary and 

sufficient for the existence of periodic distribution of parameters in the flow above the 

plane, is consequently identical with the condition for the periodicity of structure. With 

the increase in B,* /Be%, the periodicity, as was indicated, disappears.This is related to 
the change in the type of singular points of the initial non-linear system of equations 161. 

3. Properties of the medium may, generally speaking, depend not only on the temper- 
ature and pressure but also on other quantities. If, in particular, initial equations (1.1) to 
(1.4) and (1.6) and the equation of state (1.5) are considered as ‘single-fluid approximation’ 
in the dynamics of an ionized gas, then the scalar conductivity v may be considered as 
depending on the concentration of electrons which is determined from additional consider- 
ations. It is apparent that in this case a change in the conductivity will not have any 
effect on the periodic structure of the velocity profile far from the boundary. However, in 
contrast to section 2, the construction of approximate solution for the entire flow is here 
sometimes successful. 

Let us examine for example the motion of a weakly ionized gas at low pressure where it 
is possible to neglect the induced magnetic field and processes of spatial ionization and 
recombination. In this case concentrations of charged particles near the wall at which re- 
combination takes place are governed by ambipolar diffusion. Taking into account only 
the collisions of neutral particles with electrons and ions and neglecting, as usual, inertia1 
terms, it is possible to write the following equations of motion of charged particles [3] : 

( en+! $“XB +-E_vexB++-&e=O i 
mn 

Vp,+en@ E+ 
8 i 

V&+-e+ E+~vxB ( > eni -~v~xB+~~v~,o 

div [ ne (v + v,)] = 0 13.2) 

here ne and “i are the concentrations of electrons andions. V, and Vi are their diffusion 

velocities and pe and pi their pressures. In accordance with statements made above, 

B = e,& is the external magnetic field. We shall assume that each of the components 

is a perfect gae. Then, for the case of equal and constant temperatures of components 

(which is approximately applicable for small Mach numbers and weak flows),Vpe = kT V ns, 

and Vpi = kTVni. Noting that Re =: ni by virtue of quasineutrality and v,$ = Q, 

because of the absence of the fIow towards the wall, we obtain from f3.I) and (3.2) 

As a result of small influence of compressibility on the flow as a whole 8 = vu, 3 co& 
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and the simple diffusion equation follows 

dzn, dn, 
D,ap-vdy=O D,= 

2kTz& 2kTti 
-- 

m,zi -f miZ, - mi 

(3.3) 

Taking into consideration the conditions ne = 0 for y = 0 and ne = n for y + m a 

solution of this equation exists for u < 0 (suction at the boundary) and has the form 

ne = n, (1 - esyl) (s=E) 

in this connection the dimensionless coordinate yr is determined in the same manner as in 

sections 1 and 2. Taking into account the equation (I = n,&, / m,, we obtain 

u = am (1 - ,SUl) 

Now we turn to Equations (1.12) and (1.13) where it is necessary to neglect terms 

uB” in comparison with V”Bo. In this case instead of (1.15) we obtain for V” the following 

equation 

Parameter MO2 contains here u o. instead of 6. The solution 

the conditions 

V” (0) = v,, v” (m) = V,O 

is written in the following form using the cylindrical functions 

(3.5) 

for equation (3.5) satisfying 

(3.6) 

v = - +- -jfRz + S2E,2 

It is easy to see that expressions (3.6) when S + - m and (1.16) when R,’ + 0 , 
coincide. In the other limiting case where 1 S I< 1, the solution behaves monotonely near 

the wall, while for ~1% 1 S j-1 it again becomes oscillatory. Thus, an increase in the dif- 

fusion coefficient Da leads to a shift of the first extrema u and w away from the boundary, 

and there is a corresponding decrease of maximum amplitudes of oscillation of the velocity 

profile. However, the non-monotone character of distribution of L and w is preserved for 

any finite Da and S # 0. 

4. Non-monotone distributions of velocities also occur in more complicated flows. 

In some cases when it is possible to reduce the problem to ordinary differential equations, 

a proof of non-monotone character is easily obtained by examining the asymptotic behavior 

of the solution away from the boundary. The problem of rotation of a plane in an in- 

compressible fluid in the presence of an external homogeneous magnetic field parallel to 

the axis of rotation can serve as an example. 

Let the plane z = 0 rotate with angular velocity a = const and let all parameters 

depend only on r and z. We introduce the Von Karman substitution 
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u,=rf(z), ue=Fg(z), uz-h(z), B,=rF(z), Be=rC(z), B,=H(z) 
p + ‘/s n-’ B2 = ‘/2 PO F2 + P (z), po = con& (4.1) 

From general equations of magnetohydrodynamics we obtain the equations of motion 

in the form 

P (f” + hf’ - &Y2) = -~o+rlj’+&‘~+H~‘-C~) (4.2) 

P (% + hg’) = WY”+ & (2FG + HG’) (4.3) 

phh’ = -P’ + q/f + G ’ HH’ (4.4) 

From Ohm’s law and the equation curl B = &,j / c we find 

-~G’=~(-~~~+~~)+~~r(~H-~a~)-~ar(~~+ HF’-GGa) 

FF’ = ‘9 F (hF-fH) - CtF (2PG + HG’) 
(4.5) 

2G=;(- $‘p+‘q) + %~a(fG--gP) -dH’ 

Here cp is the electrical potential 

B2 = r2 (P + G2) + HZ. 

We assume that 

o)=$!- 

Then from (4.5) it follows that 

2G = CD,,‘ - aHH (4.6) 

-GG’ = CD,,+ F(gH-hG)-a(F2+ HF’--2) (4.7) 

F’ = F (hF - fH) - a (2FG + HG’) 

+%‘+%(fG-gF)=o 

In addition ot this, Equations div v = 0, and div B = 0 show that 

(4.8) 

(4.9) 

f = - ‘Ia h’, F = - 1/Z H’ (4.10) 

Equations (4.4) and (4.6) are used for computation of P and mu. Functions f, g, h, F, 
G, H and a, are determined from the system (4.2), (4.3) and (4.7) to (4.101, which after 
elimination of f. P and 9 takes the form 
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p (hg’ - gh’) = qg” $ & (HG' - GH’) 

_G"=~(g~H_~hc')_~(~_~_G2)' 

H” --= 
2 

2~(h’N--hEl’)-u(HG’-GCH’) (v,=c2/4;15) 
m 

k4.11) 

Investigation of the non-linear equations (4.11) will be carried out in the same manner 

as in section 2, i.e. by finding exponential solutions of the corresponding linearized equa- 

tions. Assuming that h. = h, + A,@‘, H = H, + AHeY , . . . etc., we obtain for y 

the equation 

For a = 0, and G, = g, = 0 we obtain from here two, different from zero, real 

values for T, which correspond to monotone variations of velocity [7]. 

If u # 0, while G, 7~ g, = 0, then the equation for T assumes the form 

[(r-k) (r- +) - %I2 + ~2cPH,” (r - b)” = 0 

and gives four complex values of T, which are identical to ‘f’1,2, and 71, 2, found in 

section 1 for the problem of translational flow of an incompressible fluid above a permeable 

plane, within the accuracy of the method. Thus, if the azimuth components of velocity and of 

the field are absent at infinity, then the geometry of the problem has no effect on asymptotic 

properties of the solution. When one of the equalities Go, = 0, or g. =O, is not ful- 

filled, for example in the case H, = 0, g, ;f= 0, from (4.12) follows 

7 1,s =k3l n - 2aGx3, Ts_e = ka / 2x7 f 7/(h,/2v)” f 2igJ Y (4.13) 

The last four roots do not depend on U, vrn, and G, and are complex for all go, #O 

When cz = 0, and pg&, = - H,G, / 4n non-zero roots of (4.12) 

are also complex for g, # 0. 

Thus, in contrast with the problems in section 1 to 3, the periodic structure of the 

flow above a rotating disc may not only be caused by the auisotropy of conductivity, but 

may also occur when a non-conducting fluid rotates at infinity. This conclusion is 
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justified under the assumption that the system (4.1) has a solution with g, # 0. The 

existence of such solutions requires a separate proof. Periodic distributions of velocities 

in the case of rotation of a non-conducting and a weakly conducting (U = 0, & < 1) 
fluid above a stationary plane were discovered in [S] and [9], respectively, where the 

solutions for boundary layer equations were also constructed. 
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